草图在快速执行的徒手绘图时会形成直观而有力的视觉表达。我们提出了一种从场景草图中综合现实照片的方法。不需要草图和照片对,我们的框架直接以无监督的方式从随时可用的大型照片数据集中学习。为此,我们引入了一个标准化模块,该模块在训练期间通过将照片和草图转换为标准化域,即边缘地图,从而提供伪素描 - 光谱对。草图和照片之间的域间隙减少也使我们可以将它们分为两个组成部分:整体场景结构和低级视觉样式,例如颜色和纹理。利用这一优势,我们通过结合草图的结构和参考照片的视觉样式来合成照片真实的图像。关于感知相似性指标和人类感知研究的广泛实验结果表明,该方法可以从场景草图和跑赢大于最先进的照片合成基准中产生逼真的照片。我们还证明,我们的框架通过编辑相应草图的笔触来促进对照片综合的可控操作,从而比依赖于区域级编辑的以前的方法提供了更多细粒度的细节。
translated by 谷歌翻译
我们提出了一种新的成本聚合网络,称为成本聚合变压器(CAT),在语义类似的图像之间找到密集的对应关系,其中具有大型类内外观和几何变化构成的额外挑战。成本聚合是匹配任务的一个非常重要的过程,匹配精度取决于其输出的质量。与寻址成本聚集的手工制作或基于CNN的方法相比,缺乏严重变形的鲁棒性或继承了由于接受领域有限而无法区分错误匹配的CNN的限制,猫探讨了初始相关图之间的全球共识一些建筑设计的帮助,使我们能够充分利用自我关注机制。具体地,我们包括外观亲和力建模,以帮助成本聚合过程,以消除嘈杂的初始相关映射并提出多级聚合,以有效地从分层特征表示中捕获不同的语义。然后,我们与交换自我关注技术和残留连接相结合,不仅要强制执行一致的匹配,而且还可以缓解学习过程,我们发现这些结果导致了表观性能提升。我们进行实验,以证明拟议模型在最新方法中的有效性,并提供广泛的消融研究。代码和培训的型号可以在https://github.com/sunghwanhong/cats提供。
translated by 谷歌翻译
Understanding the informative structures of scenes is essential for low-level vision tasks. Unfortunately, it is difficult to obtain a concrete visual definition of the informative structures because influences of visual features are task-specific. In this paper, we propose a single general neural network architecture for extracting task-specific structure guidance for scenes. To do this, we first analyze traditional spectral clustering methods, which computes a set of eigenvectors to model a segmented graph forming small compact structures on image domains. We then unfold the traditional graph-partitioning problem into a learnable network, named \textit{Scene Structure Guidance Network (SSGNet)}, to represent the task-specific informative structures. The SSGNet yields a set of coefficients of eigenvectors that produces explicit feature representations of image structures. In addition, our SSGNet is light-weight ($\sim$ 55K parameters), and can be used as a plug-and-play module for off-the-shelf architectures. We optimize the SSGNet without any supervision by proposing two novel training losses that enforce task-specific scene structure generation during training. Our main contribution is to show that such a simple network can achieve state-of-the-art results for several low-level vision applications including joint upsampling and image denoising. We also demonstrate that our SSGNet generalizes well on unseen datasets, compared to existing methods which use structural embedding frameworks. Our source codes are available at https://github.com/jsshin98/SSGNet.
translated by 谷歌翻译
For change detection in remote sensing, constructing a training dataset for deep learning models is difficult due to the requirements of bi-temporal supervision. To overcome this issue, single-temporal supervision which treats change labels as the difference of two semantic masks has been proposed. This novel method trains a change detector using two spatially unrelated images with corresponding semantic labels such as building. However, training on unpaired datasets could confuse the change detector in the case of pixels that are labeled unchanged but are visually significantly different. In order to maintain the visual similarity in unchanged area, in this paper, we emphasize that the change originates from the source image and show that manipulating the source image as an after-image is crucial to the performance of change detection. Extensive experiments demonstrate the importance of maintaining visual information between pre- and post-event images, and our method outperforms existing methods based on single-temporal supervision. code is available at https://github.com/seominseok0429/Self-Pair-for-Change-Detection.
translated by 谷歌翻译
Zero-shot quantization is a promising approach for developing lightweight deep neural networks when data is inaccessible owing to various reasons, including cost and issues related to privacy. By utilizing the learned parameters (statistics) of FP32-pre-trained models, zero-shot quantization schemes focus on generating synthetic data by minimizing the distance between the learned parameters ($\mu$ and $\sigma$) and distributions of intermediate activations. Subsequently, they distill knowledge from the pre-trained model (\textit{teacher}) to the quantized model (\textit{student}) such that the quantized model can be optimized with the synthetic dataset. In general, zero-shot quantization comprises two major elements: synthesizing datasets and quantizing models. However, thus far, zero-shot quantization has primarily been discussed in the context of quantization-aware training methods, which require task-specific losses and long-term optimization as much as retraining. We thus introduce a post-training quantization scheme for zero-shot quantization that produces high-quality quantized networks within a few hours on even half an hour. Furthermore, we propose a framework called \genie~that generates data suited for post-training quantization. With the data synthesized by \genie, we can produce high-quality quantized models without real datasets, which is comparable to few-shot quantization. We also propose a post-training quantization algorithm to enhance the performance of quantized models. By combining them, we can bridge the gap between zero-shot and few-shot quantization while significantly improving the quantization performance compared to that of existing approaches. In other words, we can obtain a unique state-of-the-art zero-shot quantization approach.
translated by 谷歌翻译
We study the compute-optimal trade-off between model and training data set sizes for large neural networks. Our result suggests a linear relation similar to that supported by the empirical analysis of Chinchilla. While that work studies transformer-based large language models trained on the MassiveText corpus (gopher), as a starting point for development of a mathematical theory, we focus on a simpler learning model and data generating process, each based on a neural network with a sigmoidal output unit and single hidden layer of ReLU activation units. We establish an upper bound on the minimal information-theoretically achievable expected error as a function of model and data set sizes. We then derive allocations of computation that minimize this bound. We present empirical results which suggest that this approximation correctly identifies an asymptotic linear compute-optimal scaling. This approximation can also generate new insights. Among other things, it suggests that, as the input space dimension or latent space complexity grows, as might be the case for example if a longer history of tokens is taken as input to a language model, a larger fraction of the compute budget should be allocated to growing the learning model rather than training data set.
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
Traversability estimation for mobile robots in off-road environments requires more than conventional semantic segmentation used in constrained environments like on-road conditions. Recently, approaches to learning a traversability estimation from past driving experiences in a self-supervised manner are arising as they can significantly reduce human labeling costs and labeling errors. However, the self-supervised data only provide supervision for the actually traversed regions, inducing epistemic uncertainty according to the scarcity of negative information. Negative data are rarely harvested as the system can be severely damaged while logging the data. To mitigate the uncertainty, we introduce a deep metric learning-based method to incorporate unlabeled data with a few positive and negative prototypes in order to leverage the uncertainty, which jointly learns using semantic segmentation and traversability regression. To firmly evaluate the proposed framework, we introduce a new evaluation metric that comprehensively evaluates the segmentation and regression. Additionally, we construct a driving dataset `Dtrail' in off-road environments with a mobile robot platform, which is composed of a wide variety of negative data. We examine our method on Dtrail as well as the publicly available SemanticKITTI dataset.
translated by 谷歌翻译
Mixup is a popular data augmentation technique based on creating new samples by linear interpolation between two given data samples, to improve both the generalization and robustness of the trained model. Knowledge distillation (KD), on the other hand, is widely used for model compression and transfer learning, which involves using a larger network's implicit knowledge to guide the learning of a smaller network. At first glance, these two techniques seem very different, however, we found that ``smoothness" is the connecting link between the two and is also a crucial attribute in understanding KD's interplay with mixup. Although many mixup variants and distillation methods have been proposed, much remains to be understood regarding the role of a mixup in knowledge distillation. In this paper, we present a detailed empirical study on various important dimensions of compatibility between mixup and knowledge distillation. We also scrutinize the behavior of the networks trained with a mixup in the light of knowledge distillation through extensive analysis, visualizations, and comprehensive experiments on image classification. Finally, based on our findings, we suggest improved strategies to guide the student network to enhance its effectiveness. Additionally, the findings of this study provide insightful suggestions to researchers and practitioners that commonly use techniques from KD. Our code is available at https://github.com/hchoi71/MIX-KD.
translated by 谷歌翻译
We consider local kernel metric learning for off-policy evaluation (OPE) of deterministic policies in contextual bandits with continuous action spaces. Our work is motivated by practical scenarios where the target policy needs to be deterministic due to domain requirements, such as prescription of treatment dosage and duration in medicine. Although importance sampling (IS) provides a basic principle for OPE, it is ill-posed for the deterministic target policy with continuous actions. Our main idea is to relax the target policy and pose the problem as kernel-based estimation, where we learn the kernel metric in order to minimize the overall mean squared error (MSE). We present an analytic solution for the optimal metric, based on the analysis of bias and variance. Whereas prior work has been limited to scalar action spaces or kernel bandwidth selection, our work takes a step further being capable of vector action spaces and metric optimization. We show that our estimator is consistent, and significantly reduces the MSE compared to baseline OPE methods through experiments on various domains.
translated by 谷歌翻译